
计算概论A—实验班

函数式程序设计
Functional Programming

胡振江，张 伟

北京⼤学 计算机学院
2022年09～12⽉

第9章：An Example: The Countdown Problem

Adapted from Graham’s Lecture slides

What Is Countdown?

✤A popular quiz programme on British television that has
been running since 1982.

✤Based upon an original French version called "Des Chiffres
et Des Lettres”.

✤ Includes a numbers game that we shall refer to as the
countdown problem.

Countdown: An example
✤Using the numbers

1 3 7 10 25 50
and the arithmetic operators

+ - * ÷

construct an expression whose value is 765

Countdown: Two Rules

1. All the numbers, including intermediate results, must be
positive naturals (1,2,3,…).

2. Each of the source numbers can be used at most once
when constructing the expression.

Countdown: The example
✤For the example above, one possible solution is

(25 - 10) * (50 + 1) 765=
✴There are 780 solutions for this example.

✴Changing the target number to gives an example
that has no solutions.

831

Evaluating Expressions
✤A type for Operators:

 data Op = Add | Sub | Mul | Div deriving (Show)

✤Apply an operator:

 apply :: Op -> Int -> Int -> Int
 apply Add x y = x + y
 apply Sub x y = x - y
 apply Mul x y = x * y
 apply Div x y = x `div` y

✤Decide if the result of applying an operator to two positive
natural numbers is another such:

 valid :: Op -> Int -> Int -> Bool
 valid Add _ _ = True
 valid Sub x y = x > y
 valid Mul _ _ = True
 valid Div x y = x `mod` y == 0

✤A type for Expressions:

 data Expr = Val Int | App Op Expr Expr
 deriving (Show)

✤Return the overall value of an expression, provided that it is
a positive natural number:

 eval :: Expr -> [Int]
 eval (Val n) = [n | n > 0]
 eval (App o l r) = [apply o x y | x <- eval l
 , y <- eval r
 , valid o x y]

• Either: succeeds and returns a singleton list
• Or: fails and returns the empty list

Some combinatorial functions
✤ Returns all subsequences of a list.

 subs :: [a] -> [[a]]
 subs [] = [[]]
 subs (x:xs) = let yss = subs xs
 in yss ++ map (x:) yss

Some combinatorial functions
✤Returns all possible ways of inserting a new element into a list.

 interleave :: a -> [a] -> [[a]]
 interleave x [] = [[x]]
 interleave x (y:ys) = (x:y:ys) : map (y:) (interleave x ys)

Some combinatorial functions
✤Returns all permutations of a list.

 perms :: [a] -> [[a]]
 perms [] = [[]]
 perms (x:xs) = concat $ map (interleave x) (perms xs)

Some combinatorial functions
✤Return a list of all possible ways of choosing zero or more

elements from a list in any order.

 choices :: [a] -> [[a]]
 choices = concat . map perms . subs

Formalising The Problem
✤Return a list of all the values in an expression.

 values :: Expr -> [Int]
 values (Val n) = [n]
 values (App _ l r) = values l ++ values r

✤Decide if an expression is a solution for a given list of
source numbers and a target number.
 solution :: Expr -> [Int] -> Int -> Bool
 solution e ns n = (values e) `elem` (choices ns)
 && eval e == [n]

Brute Force Solution
✤Return a list of all possible ways of splitting a list into two

non-empty parts.
 split :: [a] -> [([a],[a])]
 split [] = []
 split [_] = []
 split (x:xs) = ([x],xs) : [(x:ls, rs) | (ls,rs) <- split xs]

Brute Force Solution
✤Return a list of all possible expressions whose values are

precisely a given list of numbers.
 exprs :: [Int] -> [Expr]
 exprs [] = []
 exprs [n] = [Val n]
 exprs ns = [e | (ls,rs) <- split ns
 , l <- exprs ls
 , r <- exprs rs
 , e <- combine l r]

 combine :: Expr -> Expr -> [Expr]
 combine l r = [App o l r | o <- [Add,Sub,Mul,Div]]

Brute Force Solution
✤Return a list of all possible expressions that solve an

instance of the countdown problem.

 solutions :: [Int] -> Int -> [Expr]
 solutions ns n = [e | ns' <- choices ns
 , e <- exprs ns'
 , eval e == [n]]

How Fast Is It?
Hardware: 2.8GHz Core 2 Duo, 4GB RAM

Compiler: GHC version 7.10.2

Example: solutions [1,3,7,10,25,50] 765

One solution: 0.108 seconds

All solutions:12.224 seconds

如果在ghci中运⾏，时间估计会增加⼀个数量级

Can We Do Better?

✤Many of the expressions that are considered will typically be
invalid - fail to evaluate.

✤For our example, only around 5 million of the 33 million
possible expressions are valid.

✤Combining generation with evaluation would allow earlier
rejection of invalid expressions.

Fusing generation and evaluation
✤A type for Valid expressions and their values:

 type Result = (Expr, Int)

✤A function without fusion

 results :: [Int] -> [Result]
 results ns = [(e,n) | e <- exprs ns
 , n <- eval e]

 results :: [Int] -> [Result]
 results ns = [(e,n) | e <- exprs ns
 , n <- eval e]

Fusing generation and evaluation

✤A function without fusion
✤A function with fusion

 results :: [Int] -> [Result]
 results [] = []
 results [n] = [(Val n, n) | n > 0]
 results ns = [res | (ls,rs) <- split ns
 , lx <- results ls
 , ry <- results rs
 , res <- combine' lx ry]

 combine' :: Result -> Result -> [Result]
 combine' (l,x) (r,y) = [(App o l r, apply o x y)
 | o <- [Add,Sub,Mul,Div]
 , valid o x y]

A better solution

 solutions' :: [Int] -> Int -> [Expr]
 solutions' ns n = [e | ns' <- choices ns
 , (e,m) <- results ns'
 , m == n]

How Fast Now?
Hardware: 2.8GHz Core 2 Duo, 4GB RAM

Compiler: GHC version 7.10.2

Example: solutions [1,3,7,10,25,50] 765

One solution: 0.108 s 0.014 s

All solutions: 12.224 s 1.312 s

Brute Force Fusion

Can We Do Better Further?
✤Many expressions will be essentially the same using simple

arithmetic properties, such as:

x * y = y * x

x * 1 = x
✤Exploiting such properties would considerably reduce the

search and solution spaces.

✤ In Haskell, a new name for an existing type can be defined
using a type declaration.

A better valid function

 valid :: Op -> Int -> Int -> Bool
 valid Add x y = True
 valid Sub x y = x > y
 valid Mul x y = True
 valid Div x y = x `mod` y == 0

x <= y

x <= y && x /= 1 && y /= 1
&& y /= 1

How Fast Now?
Hardware: 2.8GHz Core 2 Duo, 4GB RAM

Compiler: GHC version 7.10.2

Example: solutions [1,3,7,10,25,50] 765

One solution: 0.108 s 0.014 s 0.007 s

All solutions: 12.224 s 1.312 s 0.119 s

Brute Force Fusion better valid

作业

作业

9-1
Modify the final program to:
1. allow the use of exponentiation in expressions;
2. produce the nearest solutions if no exact solution is possible;
3. order the solutions using a suitable measure of simplicity.

第9章：An Example: The Countdown Problem

Adapted from Graham’s Lecture slides

就到这⾥吧

